Romanowsky-Giemsa staining

WOLF D. KUHLMANN, M.D.

MVZ für Laboratoriumsmedizin Koblenz-Mittelrhein
Viktoriastrasse 39, 56068 Koblenz

The Romanowsky-type stain variants such as those originally described or modified by numerous authors, who laid the foundation for modern hematology (the famous EHRlich, CHENZINSKY, PLEHN, MALACHOWSKI, ROMANOWSKY, NOCHT, JENNER, MAY, GRÜNWALD, LEISHMAN, WRIGHT, GIEMSA etc.), are routinely used for the staining of blood and bone marrow films. Today, we know that a two-component stain is required to produce the so-called Romanowsky-Giemsa effect. Hence, all these stains contain a mixture of methylene blue and related thiazin dyes and eosin. The thiazin component must be azure B according to GIEMSA (GIEMSA G, 1902, 1903, 1904), A PAPPENHEIM (PAPPENHEIM A, 1901, 1908) and RD LILLIE (LILLIE RD, 1944, 1978 and LILLIE RD et al., 1978), and the eosin component may be eosin Y or one of the corresponding erythrosins. Azure B (methylene azure B) arises by oxidation of methylene blue. Some basics of the Romanowsky-Giemsa stains were studied by PN MARSHALL (MARSHALL PN et al., 1981) and DH WITTEKIND (WITTEKIND DH, 1983).

The typical color of cell nuclei (i.e. purple), is due to molecular interaction between eosin and the azure B-DNA complex. On the molecular nature, however, there exist many theories. The intensity of staining depends on the azure B content and on the ratio azure B / eosin Y. The staining results are influenced by several factors such as fixation, buffer pH, buffer substances and staining time. Minor modifications of working concentrations and staining time were described over the years.

GIEMSA’s stain is a member of the ROMANOWSKY group of stains. Because these stains are very tedious to prepare, they are best purchased as pre-made stock stains. The staining methods have been developed for blood films and bone marrow films, but cell smears, cellular imprints, cytospin preparations of different origin and thin tissue sections can be also used. While PAPPENHEIM’s staining, i.e. staining by combination of MAY-GRÜNWALD and GIEMSA solutions, is now the standard method in haematology, while GIEMSA staining is the preferred procedure for other histologies. Staining procedures may vary according to the material under study, particularly for tissue sections.

The Romanowsky-type variants lead to some differences in staining. The basic mechanisms and effects, however, are almost the same. Stainings in tissue sections are more variable than in blood films because (and not only due to tissue fixation) tissue sections contain more stainable components. The published protocols report additional steps such as differentiation, dehydration and embedding. Standard procedures do not exist. The whole set-up depends on the cell or tissue type as well as on necessary pretreatments. Hence, experimental evaluation of the method is needed.

Staining must be long enough to develop cellular details. Satisfactory results were reported by use of more dilute staining solutions and longer incubation times. Differentiation is obtained
by dilute acetic acid in order to remove excess blue color or by 95% ethanol to remove excess eosin. These steps may be controlled under the microscope.*

GIEMSA staining of air-dried smears, cytopsins, frozen sections

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Chemical solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azure B-Eosin stock solution (Merck),</td>
<td></td>
</tr>
<tr>
<td>Giemsa’s azure eosin methylene blue solution</td>
<td></td>
</tr>
<tr>
<td>containing</td>
<td></td>
</tr>
<tr>
<td>Azure B (C.I. 52010) and</td>
<td></td>
</tr>
<tr>
<td>Methylene blue (C.I. 52015) and</td>
<td></td>
</tr>
<tr>
<td>Eosin Y (C.I. 45380)</td>
<td></td>
</tr>
<tr>
<td>HEPES, free acid</td>
<td></td>
</tr>
<tr>
<td>HEPES, sodium salt</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td></td>
</tr>
<tr>
<td>Distilled water</td>
<td></td>
</tr>
<tr>
<td>• HEPES stock A: 0.1 M HEPES (free acid) in distilled</td>
<td></td>
</tr>
<tr>
<td>water</td>
<td></td>
</tr>
<tr>
<td>• HEPES stock B: 0.1 M HEPES (sodium salt) in distilled</td>
<td></td>
</tr>
<tr>
<td>water</td>
<td></td>
</tr>
<tr>
<td>• HEPES buffer: 900.0 mL HEPES stock A plus</td>
<td></td>
</tr>
<tr>
<td>100.0 mL HEPES stock B</td>
<td></td>
</tr>
<tr>
<td>if necessary, adjust pH to 6.5</td>
<td></td>
</tr>
<tr>
<td>(buffer is stable for months at 4°C)</td>
<td></td>
</tr>
<tr>
<td>• HEPES buffer working:</td>
<td></td>
</tr>
<tr>
<td>300.0 mL HEPES buffer plus</td>
<td></td>
</tr>
<tr>
<td>700.0 mL distilled water</td>
<td></td>
</tr>
<tr>
<td>(corresponds to 0.03 mol/L HEPES)</td>
<td></td>
</tr>
<tr>
<td>• GIEMSA diluted dye solution: 1.0 mL Azure B-Eosin</td>
<td></td>
</tr>
<tr>
<td>stock solution plus</td>
<td></td>
</tr>
<tr>
<td>25.0 mL HEPES buffer working solution</td>
<td></td>
</tr>
</tbody>
</table>

Staining procedure

Air-dried specimens are fixed and stained:

- methanol 3-5 min
- GIEMSA diluted dye solution 5-10 min
- HEPES working buffer 2 x 1 min
- distilled water 1 x rinse

Slides are air-dried in vertical position

GIEMSA staining of paraffin sections

GIEMSA’s stain is widely used for blood and bone marrow films. However, the method is also applied to thin (2-4 µm thick) paraffin sections. Tonsils can serve as control material.

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Chemical solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIEMSA stock solution (Merck), (Azure eosin methylene</td>
<td></td>
</tr>
<tr>
<td>blue solution)</td>
<td></td>
</tr>
<tr>
<td>• Acetate buffer stock solution: 0.2 M acetate buffers</td>
<td></td>
</tr>
<tr>
<td>with different pH</td>
<td></td>
</tr>
</tbody>
</table>

* Dyes and other chemicals in histological staining can be toxic. They must be handled with care
containing Azure B (C.I. 52010) and Methylene blue (C.I. 52015) and Eosin Y (C.I. 45380)
Sodium acetate
Glacial acetic acid
n-Butanol
Distilled water

(in the range of pH 3.5 to 7.0) are prepared and examined in preliminary experiments because pH optimum for the study material should be determined previously)

- GIEMSA diluted dye solution:
 1.0 mL Giemsa stock solution plus 50.0 mL 0.02 M acetate buffer solution (1:10 dilution of 0.2 M acetate buffer, the right pH is adjusted with 5% acetic acid)
- Acetate wash buffer:
 10.0 mL 0.2 M acetate buffer plus 90.0 mL distilled water
 pH is adjusted with 5% acetic acid
- 0.01% acetic acid

Staining procedure
Sections are deparaffinated in the conventional manner, then rehydrated in descending series of ethanol, passed into distilled water and stained:

- GIEMSA diluted dye solution 1-2 hours
- acetate wash buffer 3 dips
- blot dry and control with the microscope; if “blue” predominates, differentiate in acetic acid
- differentiate in 0.01% acetic acid optional under microscopic control *
- acetate wash buffer 2-3 dips
- blot dry
- n-butanol 2 x 3 min

Slides are cleared in xylene or xylene substitute and mounted in resinous medium under coverglass. Always use separate rinse baths

* Fixation influences the color balance of Giemsa staining, and best results are obtained with appropriate pH of the staining solution. Adequate pH is determined by trial with Giemsa staining solutions prepared with acetate buffers in the range from pH 3.5-7.0. If “blue” predominates, then the pH is too high, and if “red” predominates, a higher pH must be chosen

GIEMSA staining of paraffin sections (method according to MERCK)
GIEMSA’s stain may be used as an overview staining method in histology. Sections (2-4 µm thick) of formalin, paraffin embedded tissue serve as material.

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Chemical solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIEMSA azure eosin methylene blue solution for microscopy, concentrated staining solution (Merck, Cat. No. 109204)</td>
<td>Acetic acid 0.1%, aqueous solution: 1 mL glacial acetic acid plus 1000 mL distilled water</td>
</tr>
<tr>
<td>Glacial acetic acid (100% anhydrous)</td>
<td></td>
</tr>
</tbody>
</table>
Distilled water

2-Propanol

Xylene

- **GIEMSA azure eosin methylene blue solution, undiluted and filtrated**

Staining procedure

Sections are passed through xylene and ethanol baths into distilled water, then stained:

- Distilled water 10 sec
- GIEMSA dye solution (undiluted, filtrated) 15 min *
- acetic acid 0.1 % 10 sec
- distilled water 10 sec
- 2-Propanol 10 sec
- 2-Propanol 10 sec
- 2-Propanol 10 sec
- Xylene 5 min
- Xylene 5 min

The stain remains stable when mounted with non-aqueous mounting media (e.g. Entellan). Use separate rinse baths. After dehydration and clarification with xylene, slides are mounted in resinous medium under coverglass

* The resulting stain can be influenced by fixation, staining times, pH value of the incubation solutions

PAPPENHEIM staining (May-Grünwald-Giemsa according to MERCK)

MAY-GRÜN WALD’s stain is frequently used in combination with other dye solutions such as GIEMSA’S solution in hematology and histology, the so-called PAPPENHEIM staining (MAY-GRÜN WALD-GIEMSA, MGG). The combination of both dyes is very popular for staining air-dried smears from body fluids and tissues, for thin preparations such as blood films, cytocentrifuge preparations and other cytological probes (f.e. lymph node aspirates). From the numerous modifications, the MERCK procedure is as follows.

Chemicals

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Chemical solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY-GRÜN WALD eosine-methylene blue solution for microscopy (Merck, Cat. No. 101424)</td>
<td>Working buffer solution pH 6.8: 1 buffer tablet plus 1000 mL distilled water</td>
</tr>
<tr>
<td>GIEMSA azure eosin methylene blue solution for microscopy (Merck, Cat. No. 109204)</td>
<td>MAY-GRÜN WALD staining solution: 30 mL stock solution plus 20 mL buffer solution pH 6.8 plus 150 mL distilled water</td>
</tr>
<tr>
<td>Phosphate buffer tablets pH 6.8 for preparing buffer according to WEISE (Merck, Cat. No. 111374)</td>
<td>GIEMSA staining solution: 10 mL stock solution plus 190 mL buffer solution pH 6.8</td>
</tr>
<tr>
<td>Distilled water</td>
<td></td>
</tr>
</tbody>
</table>
Staining procedure on the staining rack

Air-dried specimens, slides must be completely covered, slides are allowed to drip off well after each staining step to avoid unnecessary cross-contamination of solutions:

- MAY-GRÜNWALD staining solution 3 min
- buffer solution add 1 mL buffer solution
- GIEMSA staining solution 20 min
- buffer solution rinse
- air-dry overnight
- covering with non-aqueous mounting media

The stain remains stable when mounted with non-aqueous mounting media (e.g. Entellan). Use separate rinse baths. After dehydration and clarification with xylene, slides are mounted in resinous medium under coverglass.

* The resulting stain can be influenced by fixation, staining times, pH value of the incubation solutions

PAPPENHEIM staining (DGHO standard stain according to BINDER T et al. 2012)

The Romanowsky-Giemsa effect depends largely on a sufficient alcoholic fixation. Even then the staining quality is just assured by rigorous control of the whole staining procedure. Standardized protocols are to be preferred for reliable staining results of nucleic and cytoplasmic details. To this aim, the DEUTSCHE GESELLSCHAFT FÜR HÄMATOLOGIE UND ONKOLOGIE (DGHO) published the description of a standard procedure for the PAPPENHEIM stain (BINDER T et al., 2012). They recommend this procedure to obtain inter-laboratory identical results.

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Chemical solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol (Merck, Cat. No. 106009)</td>
<td>• Working buffer solution pH 6.8:</td>
</tr>
<tr>
<td>MAY-GRÜNWALD eosine-methylene blue</td>
<td>1 buffer tablet plus</td>
</tr>
<tr>
<td>solution for microscopy (Merck, Cat. No. 101424)</td>
<td>1000 mL distilled water (pH control advised)</td>
</tr>
<tr>
<td>GIEMSA azure eosin methylene blue</td>
<td>• MAY-GRÜNWALD staining solution:</td>
</tr>
<tr>
<td>solution for microscopy (Merck, Cat. No. 109204)</td>
<td>60 mL stock solution plus</td>
</tr>
<tr>
<td>Phosphate buffer tablets pH 6.8</td>
<td>30 mL buffer solution pH 6.8</td>
</tr>
<tr>
<td>for preparing buffer according to WEISE (Merck, Cat. No. 111374)</td>
<td>• GIEMSA staining solution:</td>
</tr>
<tr>
<td>Distilled water</td>
<td>10 mL stock solution plus</td>
</tr>
<tr>
<td></td>
<td>60 mL buffer solution pH 6.8</td>
</tr>
<tr>
<td></td>
<td>(filtration is optional, but pH control advised)</td>
</tr>
</tbody>
</table>

Staining procedure in Coplin or Schiefferdecker jars

It is important to fix air-dried specimens in methanol prior to staining. Staining solutions are freshly prepared, staining jars are covered by lids.
- Methanol (absolute) 10 min (at least)
- MAY-GRÜNWALD staining solution 7 min
 (alcoholic staining)
- preparations are dripped off no washing
- GIEMSA staining solution 20 min
 (aqueous staining)
- buffer solution 10 sec (short immersion)
- buffer solution 4 min *(differentiation)*
- buffer solution 4 min *(differentiation)*
- air-drying air drying by ventilation

The stain remains stable when mounted with non-aqueous mounting media (e.g. Entellan). After clarification with xylene, slides are mounted in resinous medium under coverglass

* The resulting stain can be influenced by fixation, staining times, pH value of the incubation solutions

References for further readings

Ehrlich P (1879)
Nocht B (1898)
Romanowsky D (1891)
Unna P (1891)
Pappenheim A (1899)
Ewing J (1901)
Pappenheim A (1901)
Giemsa G (1902)
Wright J (1902)
Giemsa G (1903)
Giemsa G (1904)
Wilson TM (1907)
Pappenheim A (1908a)
Pappenheim A (1908b)
Lillie RD (1944)
Marshall PN and Lewis SM (1975)
Marshall PN *et al.* (1975a)
Marshall PN *et al.* (1975b)
Lillie RD and Fullmer HM (1976)
Lillie RD (1978)
Lillie RD *et al.* (1978)
Marshall PN *et al.* (1978)
Russo A *et al.* (1978)
Wittekind DH (1979)
Marshall PN *et al.* (1981)
Wittekind DH (1983)
Schulte E (1987)
Horobin RW and Walter KJ (1987)
Wittekind DH and Kretschmer V (1987)
Kamino H and Tam ST (1991)
Woronzoff-Dashkoff KP (1993)
Kligora CJ et al. (1999)
Horobin RW and Kiernan AJ (Conn’s Biological Stains, 2002)
Horobin RW (2011)
Krafts KP and Pambuccian SE (2011)
Binder T et al. (2012)